Dense and Sparse Optic Flows Aggregation for Accurate Motion Segmentation in Monocular Video Sequences

نویسندگان

  • Mihai Fagadar-Cosma
  • Vladimir Cretu
  • Mihai V. Micea
چکیده

REFERENCES (13) EXPORT CITATION Title Dense and Sparse Optic Flows Aggregation for Accurate Motion Segmentation in Monocular Video Sequences Authors Mihai Fǎgǎdar-Cosma (1) [email protected] Vladimir-Ioan Creţu (1) [email protected] Mihai Victor Micea (1) [email protected] Author Affiliations Department of Computer Science, “Politehnica” University of Timisoara, Timişoara, Romania 1. DOI 10.1007/978-3-642-31295-3_25 SpringerLink Date Thursday, June 21, 2012 Title Image Analysis and Recognition 9th International Conference, ICIAR 2012, Aveiro, Portugal, June 25-27, 2012. Proceedings, Part I Editors Aurélio Campilho Mohamed Kamel Collection Computer Science Subjects None Assigned Copyright Year 2012 DOI 10.1007/978-3-642-31295-3 ISBN 978-3-642-31294-6 Additional Links About This Volume Publisher Springer Berlin / Heidelberg SpringerLink Date Thursday, June 21, 2012 IMAGE ANALYSIS AND RECOGNITION Lecture Notes in Computer Science, 2012, Volume 7324/2012, 208-215, DOI: 10.1007/978-3-642-31295-3_25 Dense and Sparse Optic Flows Aggregation for Accurate Motion Segmentation in Monocular Video Sequences Mihai Fǎgǎdar-Cosma, Vladimir-Ioan Creţu and Mihai Victor Micea

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video

Common motion is a fundamental grouping cue in video sequences. While for monocular and stereo image sequences, several approaches to motion segmentation have been investigated, it still remains a research problem to compute dense 3D motion segmentation efficiently. Many approaches match images sparsely at interest points and infer the groups of points with common 3D rigid-body motion (e.g., [1...

متن کامل

Joint Semantic Segmentation and 3D Reconstruction from Monocular Video

We present an approach for joint inference of 3D scene structure and semantic labeling for monocular video. Starting with monocular image stream, our framework produces a 3D volumetric semantic + occupancy map, which is much more useful than a series of 2D semantic label images or a sparse point cloud produced by traditional semantic segmentation and Structure from Motion(SfM) pipelines respect...

متن کامل

Model-Assisted 3D Face Reconstruction from Video

This paper describes a model-assisted system for reconstruction of 3D faces from a single consumer quality camera using a structure from motion approach. Typical multi-view stereo approaches use the motion of a sparse set of features to compute camera pose followed by a dense matching step to compute the final object structure. Accurate pose estimation depends upon precise identification and ma...

متن کامل

SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012